Tens of thousands of parent companies control millions of subsidiaries through long chains ofintermediary entities in global corporate networks. Conversely, tens of millions of entities aredirectly held by sole owners. We propose an algorithm for identification of ultimate controllingentities in such networks that unifies direct and indirect control and allows for continuousinterpolation between the two concepts via a factor damping long paths. By exploiting onion-likeproperties of ownership networks the algorithm scales linearly with the network size and handlescircular ownership by design. We apply it to the universe of 4.2 mln UK companies and 4 mln oftheir holders to understand the distribution of control in the country. Furthermore, we providethe first independent evaluation of the control identification results. We reveal that the proposed{\alpha}-ICON algorithm identifies more than 96% of beneficiary entities from the evaluation set andsupersedes the existing approaches reported in the literature. We refer the superiority of{\alpha}-ICONalgorithm to its ability to correctly identify the parents long away from their subsidiaries in thenetwork.
翻译:数以万计的母公司通过全球公司网络的中转实体的长链控制着数以百万计的子公司。相反,数以千万计的实体则直接由独资者持有。我们建议一种算法,用以确定这种网络的最终控制权,这种网络能够统一直接和间接的控制,并允许通过一个阻断长路的因素在这两个概念之间连续进行内插。通过利用所有权网络的洋葱类特性,算法以网络规模为线性标尺,通过设计处理螺旋式所有权。我们将其应用于4.2毫升的英国公司和4毫升的持有者,以了解国内控制权的分配情况。此外,我们提供了对控制识别结果的第一次独立评估。我们透露,拟议的算法从评价中找出了超过96%的受益实体,并监督了文献中报告的现有方法。我们把“西法”-ICONALGORTERM的优越性标称其正确识别远离网络子公司的父母的能力。