In this paper, we propose Posterior Sampling Reinforcement Learning for Zero-sum Stochastic Games (PSRL-ZSG), the first online learning algorithm that achieves Bayesian regret bound of $O(HS\sqrt{AT})$ in the infinite-horizon zero-sum stochastic games with average-reward criterion. Here $H$ is an upper bound on the span of the bias function, $S$ is the number of states, $A$ is the number of joint actions and $T$ is the horizon. We consider the online setting where the opponent can not be controlled and can take any arbitrary time-adaptive history-dependent strategy. This improves the best existing regret bound of $O(\sqrt[3]{DS^2AT^2})$ by Wei et. al., 2017 under the same assumption and matches the theoretical lower bound in $A$ and $T$.
翻译:在本文中,我们提议为零和沙发运动会(PSRL-ZSG)提供Poside Servication Securement Learning,这是第一个在线学习算法,它使巴伊西亚人以平均回报标准在无限一等零和零和随机游戏中以美元(O(HS\sqrt{AT})为遗憾)实现遗憾。这里,H$是偏差功能的上限,$S是国家数量,$A$是联合行动的数量,$T$是地平线。我们认为,在网上设置中,对手无法控制,可以采取任何任意的时间适应历史的战略。这改善了Wei等人根据同一假设对2017年美元(O)(Sqrt[3]{DS%2AT})的现有最佳遗憾约束,并符合以美元和美元计算的较低理论约束。