Ultrasound imaging is widely used in clinical diagnosis due to its non-invasive nature and real-time capabilities. However, traditional ultrasound diagnostics relies heavily on physician expertise and is often hampered by suboptimal image quality, leading to potential diagnostic errors. While artificial intelligence (AI) offers a promising solution to enhance clinical diagnosis by detecting abnormalities across various imaging modalities, existing AI methods for ultrasound face two major challenges. First, they typically require vast amounts of labeled medical data, raising serious concerns regarding patient privacy. Second, most models are designed for specific tasks, which restricts their broader clinical utility. To overcome these challenges, we present UltraFedFM, an innovative privacy-preserving ultrasound foundation model. UltraFedFM is collaboratively pre-trained using federated learning across 16 distributed medical institutions in 9 countries, leveraging a dataset of over 1 million ultrasound images covering 19 organs and 10 ultrasound modalities. This extensive and diverse data, combined with a secure training framework, enables UltraFedFM to exhibit strong generalization and diagnostic capabilities. It achieves an average area under the receiver operating characteristic curve (AUROC) of 0.927 for disease diagnosis and a dice similarity coefficient (DSC) of 0.878 for lesion segmentation. Notably, UltraFedFM surpasses the diagnostic accuracy of mid-level ultrasonographers (4-8 years of experience) and matches the performance of expert-level sonographers (10+ years of experience) in the joint diagnosis of 8 common systemic diseases.c These findings indicate that UltraFedFM can significantly enhance clinical diagnostics while safeguarding patient privacy, marking a significant advancement in AI-driven ultrasound imaging for future clinical applications.
翻译:超声成像因其无创性和实时性在临床诊断中广泛应用。然而,传统超声诊断高度依赖医师经验,且常受限于图像质量欠佳,可能导致诊断误差。尽管人工智能(AI)通过检测多种成像模式中的异常为提升临床诊断提供了前景广阔的解决方案,现有超声AI方法面临两大挑战:其一,通常需要大量标注医学数据,引发严重的患者隐私关切;其二,多数模型针对特定任务设计,限制了其更广泛的临床应用。为应对这些挑战,我们提出UltraFedFM——一种创新的隐私保护超声基础模型。UltraFedFM通过联邦学习在9个国家16家分布式医疗机构协同预训练,利用覆盖19个器官和10种超声模式的超百万张图像数据集。这种广泛而多样的数据结合安全训练框架,使UltraFedFM展现出强大的泛化与诊断能力:在疾病诊断中平均受试者工作特征曲线下面积(AUROC)达0.927,在病灶分割中戴斯相似系数(DSC)达0.878。值得注意的是,在对8种常见全身疾病的联合诊断中,UltraFedFM超越了中级超声医师(4-8年经验)的诊断准确率,并与专家级超声医师(10年以上经验)的表现相当。这些发现表明,UltraFedFM能在保护患者隐私的同时显著提升临床诊断水平,标志着AI驱动超声成像在未来临床应用中的重大进展。