We study Frege proofs for the one-to-one graph Pigeon Hole Principle defined on the $n\times n$ grid where $n$ is odd. We are interested in the case where each formula in the proof is a depth $d$ formula in the basis given by $\land$, $\lor$, and $\neg$. We prove that in this situation the proof needs to be of size exponential in $n^{Ω(1/d)}$. If we restrict the size of each line in the proof to be of size $M$ then the number of lines needed is exponential in $n/(\log M)^{O(d)}$. The main technical component of the proofs is to design a new family of random restrictions and to prove the appropriate switching lemmas.
翻译:我们研究定义在$n\\times n$网格上的一对一图鸽巢原理的Frege证明,其中$n$为奇数。我们关注证明中每个公式均为由$\\land$、$\\lor$和$\\neg$给出的基中深度为$d$的公式的情况。我们证明在此情形下,证明的规模需为$n^{\\Omega(1/d)}$的指数级。若限制证明中每行的规模为$M$,则所需行数为$n/(\\log M)^{O(d)}$的指数级。证明的主要技术组成部分是设计一族新的随机限制,并证明相应的切换引理。