While strides have been made in deep learning based Bengali Optical Character Recognition (OCR) in the past decade, the absence of large Document Layout Analysis (DLA) datasets has hindered the application of OCR in document transcription, e.g., transcribing historical documents and newspapers. Moreover, rule-based DLA systems that are currently being employed in practice are not robust to domain variations and out-of-distribution layouts. To this end, we present the first multidomain large Bengali Document Layout Analysis Dataset: BaDLAD. This dataset contains 33,695 human annotated document samples from six domains - i) books and magazines, ii) public domain govt. documents, iii) liberation war documents, iv) newspapers, v) historical newspapers, and vi) property deeds, with 710K polygon annotations for four unit types: text-box, paragraph, image, and table. Through preliminary experiments benchmarking the performance of existing state-of-the-art deep learning architectures for English DLA, we demonstrate the efficacy of our dataset in training deep learning based Bengali document digitization models.
翻译:虽然在过去十年中,在基于深层次学习的孟加拉光学特征识别(OCR)方面取得了长足进展,但缺乏大型文件布局分析(DLA)数据集阻碍了在文件抄录(例如,抄录历史文件和报纸)中应用该数据库,此外,目前实际使用的基于规则的DLA系统不足以覆盖差异和分配外布局。为此,我们介绍了第一套多领域大型孟加拉文件布局分析数据集:BADLAD。该数据集包含来自6个领域的33,695个人类附加说明文件样本,来自6个领域-i)书籍和杂志,ii)公共领域文件、iii)解放战争文件、iv)报纸、v)历史报纸和vi)财产契约,其中710K多边说明了四种单元类型:文本箱、段落、图像和表格。通过初步试验,为现有英国DLA最先进的学习结构的绩效设定基准,我们展示了在培训基于孟加拉深层次学习文件数字化模型方面的数据集的功效。</s>