Let $(X,\mathcal{E})$ be a hypergraph. A support is a graph $Q$ on $X$ such that for each $E\in\mathcal{E}$, the subgraph of $Q$ induced on the elements in $E$ is connected. We consider the problem of constructing a support for hypergraphs defined by connected subgraphs of a host graph. For a graph $G=(V,E)$, let $\mathcal{H}$ be a set of connected subgraphs of $G$. Let the vertices of $G$ be partitioned into two sets the \emph{terminals} $\mathbf{b}(V)$ and the \emph{non-terminals} $\mathbf{r}(V)$. We define a hypergraph on $\mathbf{b}(V)$, where each $H\in\mathcal{H}$ defines a hyperedge consisting of the vertices of $\mathbf{b}(V)$ in $H$. We also consider the problem of constructing a support for the \emph{dual hypergraph} - a hypergraph on $\mathcal{H}$ where each $v\in \mathbf{b}(V)$ defines a hyperedge consisting of the subgraphs in $\mathcal{H}$ containing $v$. In fact, we construct supports for a common generalization of the primal and dual settings called the \emph{intersection hypergraph}. As our main result, we show that if the host graph $G$ has bounded genus and the subgraphs in $\mathcal{H}$ satisfy a condition of being \emph{cross-free}, then there exists a support that also has bounded genus. Our results are a generalization of the results of Raman and Ray (Rajiv Raman, Saurabh Ray: Constructing Planar Support for Non-Piercing Regions. Discret. Comput. Geom. 64(3): 1098-1122 (2020)). Our techniques imply a unified analysis for packing and covering problems for hypergraphs defined on surfaces of bounded genus. We also describe applications of our results for hypergraph colorings.


翻译:设 $(X,\mathcal{E})$ 是一个超图。支撑图是定义在 $X$ 上的图 $Q$,使得对于每个 $E\in\mathcal{E}$,由 $E$ 中元素诱导的 $Q$ 的子图是连通的。我们考虑为主图中连通子图所定义超图构造支撑图的问题。对于图 $G=(V,E)$,令 $\mathcal{H}$ 为 $G$ 的连通子图集合。将 $G$ 的顶点划分为两个集合:\emph{终端顶点} $\mathbf{b}(V)$ 和 \emph{非终端顶点} $\mathbf{r}(V)$。我们在 $\mathbf{b}(V)$ 上定义一个超图,其中每个 $H\in\mathcal{H}$ 定义一个由 $H$ 中 $\mathbf{b}(V)$ 顶点组成的超边。我们也考虑为\emph{对偶超图}构造支撑图的问题——这是一个定义在 $\mathcal{H}$ 上的超图,其中每个 $v\in \mathbf{b}(V)$ 定义一个由包含 $v$ 的 $\mathcal{H}$ 中子图组成的超边。实际上,我们为原始设置和对偶设置的一个共同推广——称为\emph{交超图}——构造支撑图。作为主要结果,我们证明:若主图 $G$ 具有有界亏格,且 $\mathcal{H}$ 中的子图满足\emph{无交叉}条件,则存在一个同样具有有界亏格的支撑图。我们的结果是 Raman 和 Ray (Rajiv Raman, Saurabh Ray: Constructing Planar Support for Non-Piercing Regions. Discret. Comput. Geom. 64(3): 1098-1122 (2020)) 结果的推广。我们的技术意味着对有界亏格曲面上定义超图的装箱与覆盖问题提供了统一分析。我们还描述了结果在超图着色方面的应用。

0
下载
关闭预览

相关内容

NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
50+阅读 · 2021年6月2日
专知会员服务
42+阅读 · 2021年4月2日
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
40+阅读 · 2020年8月22日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
50+阅读 · 2021年6月2日
专知会员服务
42+阅读 · 2021年4月2日
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
40+阅读 · 2020年8月22日
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员