In symbolic integration, the Risch--Norman algorithm aims to find closed forms of elementary integrals over differential fields by an ansatz for the integral, which usually is based on heuristic degree bounds. Norman presented an approach that avoids degree bounds and only relies on the completion of reduction systems. We give a formalization of his approach and we develop a refined completion process, which terminates in more instances. In some situations when the algorithm does not terminate, one can detect patterns allowing to still describe infinite reduction systems that are complete. We present such infinite systems for the fields generated by Airy functions and complete elliptic integrals, respectively. Moreover, we show how complete reduction systems can be used to find rigorous degree bounds. In particular, we give a general formula for weighted degree bounds and we apply it to find tight bounds for above examples.
翻译:暂无翻译