Shape modeling and reconstruction from raw point clouds of objects stand as a fundamental challenge in vision and graphics research. Classical methods consider analytic shape priors; however, their performance degraded when the scanned points deviate from the ideal conditions of cleanness and completeness. Important progress has been recently made by data-driven approaches, which learn global and/or local models of implicit surface representations from auxiliary sets of training shapes. Motivated from a universal phenomenon that self-similar shape patterns of local surface patches repeat across the entire surface of an object, we aim to push forward the data-driven strategies and propose to learn a local implicit surface network for a shared, adaptive modeling of the entire surface for a direct surface reconstruction from raw point cloud; we also enhance the leveraging of surface self-similarities by improving correlations among the optimized latent codes of individual surface patches. Given that orientations of raw points could be unavailable or noisy, we extend sign agnostic learning into our local implicit model, which enables our recovery of signed implicit fields of local surfaces from the unsigned inputs. We term our framework as Sign-Agnostic Implicit Learning of Surface Self-Similarities (SAIL-S3). With a global post-optimization of local sign flipping, SAIL-S3 is able to directly model raw, un-oriented point clouds and reconstruct high-quality object surfaces. Experiments show its superiority over existing methods.
翻译:从天体的原始云层进行形状建模和重建是视觉和图形研究中的一个基本挑战。古典方法考虑分析形状前的形状;然而,当扫描点偏离清洁和完整性的理想条件时,其性能会退化。最近,数据驱动的方法取得了重要进展,它们学习了由辅助培训形状组成的全球和(或)地方隐含表层显示模型。从一个普遍现象的自我相似的当地表面部分形状模式在物体的整个表面重复,我们的目标是推进数据驱动的战略,并提议学习一个本地隐含的表面网络,以便从原始云层直接重建整个表面的共享和适应模型;我们还通过改进各个表面补丁的最佳潜在代码之间的关联性来增强地表自我差异的杠杆作用。鉴于原始点的方向可能不存在或很吵,我们把不可知性学习推广到我们的本地隐含模型,从而能够从未签名的投入中恢复已签署的当地表面表面隐含的领域。我们把框架称为“不信号的隐含点”的表面表面表面表面表面表面表面表面的原始精度模型化和直观的地表层自我显示高的地面的表面的表面结构。Simimal-SAAAA-SIL3。我们把框架称为一个框架称为“无型的地面的地面的地面的地面的地面的地面的地面上正正正向的地面的地面的地面的地面的地面的表面的地面的地面的表面的表面的地面结构-直向性研究”