We introduce the Lipschitz matrix: a generalization of the scalar Lipschitz constant for functions with many inputs. Among the Lipschitz matrices compatible a particular function, we choose the smallest such matrix in the Frobenius norm to encode the structure of this function. The Lipschitz matrix then provides a function-dependent metric on the input space. Altering this metric to reflect a particular function improves the performance of many tasks in computational science. Compared to the Lipschitz constant, the Lipschitz matrix reduces the worst-case cost of approximation, integration, and optimization; if the Lipschitz matrix is low-rank, this cost no longer depends on the dimension of the input, but instead on the rank of the Lipschitz matrix defeating the curse of dimensionality. Both the Lipschitz constant and matrix define uncertainty away from point queries of the function and by using the Lipschitz matrix we can reduce uncertainty. If we build a minimax space-filling design of experiments in the Lipschitz matrix metric, we can further reduce this uncertainty. When the Lipschitz matrix is approximately low-rank, we can perform parameter reduction by constructing a ridge approximation whose active subspace is the span of the dominant eigenvectors of the Lipschitz matrix. In summary, the Lipschitz matrix provides a new tool for analyzing and performing parameter reduction in complex models arising in computational science.
翻译:我们引入了Lipschitz 矩阵: 对具有多种投入的功能的 Scarar Lipschitz 常数进行概括化; 在符合特定功能的 Lipschitz 矩阵中, 我们选择Frobenius 规范中最小的矩阵来编码此功能的结构。 然后, Lipschitz 矩阵提供了对输入空间的功能依赖度度。 调整这一计量来反映计算科学中许多任务的绩效。 与 Lipschitz 常数相比, Lipschitz 矩阵可以减少最坏的近似、整合和优化成本; 如果Lipschitz 矩阵处于低位, 这一成本不再取决于输入的维度, 而是取决于击败这一功能的诅咒的Lipschitz 矩阵的等级。 Lipschitz 常数和矩阵可以从功能的点查询和使用Lipschitz 矩阵来界定不确定性。 我们可以减少不确定性。 如果我们在Lipschitz 矩阵中建立最小的空间填补模型模型设计,我们就可以进一步减少这种不确定性。 当Lipschitz 矩阵在低位时, 我们可以通过在正位化时, 进行正位化的基数矩阵的基数矩阵的精确矩阵的精确矩阵的矩阵进行递减。