The progression of innovation and technology and ease of inter-connectivity among networks has allowed us to evolve towards one of the promising areas, the Internet of Vehicles. Nowadays, modern vehicles are connected to a range of networks, including intra-vehicle networks and external networks. However, a primary challenge in the automotive industry is to make the vehicle safe and reliable; particularly with the loopholes in the existing traditional protocols, cyber-attacks on the vehicle network are rising drastically. Practically every vehicle uses the universal Controller Area Network (CAN) bus protocol for the communication between electronic control units to transmit key vehicle functionality and messages related to driver safety. The CAN bus system, although its critical significance, lacks the key feature of any protocol authentication and authorization. Resulting in compromises of CAN bus security leads to serious issues to both car and driver safety. This paper discusses the security issues of the CAN bus protocol and proposes an Intrusion Detection System (IDS) that detects known attacks on in-vehicle networks. Multiple Artificial Intelligence (AI) algorithms are employed to provide recognition of known potential cyber-attacks based on messages, timestamps, and data packets traveling through the CAN. The main objective of this paper is to accurately detect cyberattacks by considering time-series features and attack frequency. The majority of the evaluated AI algorithms, when considering attack frequency, correctly identify known attacks with remarkable accuracy of more than 99%. However, these models achieve approximately 92% to 97% accuracy when timestamps are not taken into account. Long Short Term Memory (LSTM), Xgboost, and SVC have proved to the well-performing classifiers.


翻译:创新和技术的发展以及网络之间互连互通的便利性使我们得以向一个充满希望的领域,即车辆互联网发展。如今,现代车辆与一系列网络,包括车辆内部网络和外部网络连接。然而,汽车业的主要挑战是使车辆安全和可靠;特别是由于现有传统协议的漏洞,对车辆网络的网络攻击正在急剧增加。实际上,每辆车都使用通用控制区域网(CAN)公共汽车协议,用于电子控制单位之间的通信,以传输与司机安全有关的关键车辆功能和信息。CAN公共汽车系统尽管具有关键意义,但缺乏任何协议认证和授权的关键特征。由于对CAN公共汽车安全的妥协,导致对汽车和司机安全都存在严重问题。本文讨论了CAN汽车协议的安全问题,并提议建立一个入侵探测已知对车辆网络的攻击的系统。 多种人工智能(AI)算法用于确认基于信息、时间印章和数据包的潜在网络攻击的可能性。在CAN汽车袭击的多数时间里,这些精确的频率是Servictreal,这些精确地测量了CAN攻击的频率,这些精确的频率是Serviews 。在考虑已知的论文的多数时间里 。Srationalal-dealviews reviews view views views view view view view view views

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
61+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年6月24日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
20+阅读 · 2020年6月8日
Anomalous Instance Detection in Deep Learning: A Survey
Arxiv
24+阅读 · 2020年3月11日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员