In m-eternal domination attacker and defender play on a graph. Initially, the defender places guards on vertices. In each round, the attacker chooses a vertex to attack. Then, the defender can move each guard to a neighboring vertex and must move a guard to the attacked vertex. The m-eternal domination number is the minimum number of guards such that the graph can be defended indefinitely. In this paper, we study the m-eternal domination number of cactus graphs. We consider two variants of the m-eternal domination number: one allows multiple guards to occupy a single vertex, the second variant requires the guards to occupy distinct vertices. We develop several tools for obtaining lower and upper bounds on these problems and we use them to obtain an algorithm which computes the minimum number of required guards of cactus graphs for both variants of the problem.
翻译:在 m- deternal 攻击者和捍卫者游戏中, 在图形中 。 最初, 捍卫者将守卫放在顶部。 在每一回合中, 攻击者将选择一个顶部攻击 。 然后, 捍卫者可以将每个守卫转移到相邻的顶部, 而且必须将一名守卫转移到被攻击的顶部 。 最小的看守人数是该图可以无限期地捍卫。 在本文中, 我们研究了 actus 图形 的 m- ternal 支配编号 。 我们考虑了 m- ternal 支配号的两个变体: 允许多个守卫占据一个顶部, 第二个变体要求守卫占据不同的顶部 。 我们开发了几个工具, 用于获取这些问题的下上下限和上限 。 我们用它们来获得一种算法, 算出问题两个变体所需的 仙体 图形的最小守卫人数 。