The open-radio access network (O-RAN) embraces cloudification and network function virtualization for base-band function processing by dis-aggregated radio units (RUs), distributed units (DUs), and centralized units (CUs). These enable the cloud-RAN vision in full, where multiple mobile network operators (MNOs) can install their proprietary or open RUs, but lease on-demand computational resources for DU-CU functions from commonly available open-clouds via open x-haul interfaces. In this paper, we propose and compare the performances of min-max fairness and Vickrey-Clarke-Groves (VCG) auction-based x-haul and DU-CU resource allocation mechanisms to create a multi-tenant O-RAN ecosystem that is sustainable for small, medium, and large MNOs. The min-max fair approach minimizes the maximum OPEX of RUs through cost-sharing proportional to their demands, whereas the VCG auction-based approach minimizes the total OPEX for all resources utilized while extracting truthful demands from RUs. We consider time-wavelength division multiplexed (TWDM) passive optical network (PON)-based x-haul interfaces where PON virtualization technique is used to flexibly provide optical connections among RUs and edge-clouds at macro-cell RU locations as well as open-clouds at the central office locations. Moreover, we design efficient heuristics that yield significantly better economic efficiency and network resource utilization than conventional greedy resource allocation algorithms and reinforcement learning-based algorithms.


翻译:开放无线电接入网络(O-RAN)包含云化和网络功能,由分散式无线电单位(RUs)、分布式无线电单位(DUs)和中央单位(CUs)对基段功能处理进行虚拟化处理。这可以使云-RAN全视,使多移动网络运营商(MNOs)能够安装其专有或开放的RUs,但租赁DU-CU功能按需计算的计算资源,通过开放的xhaul界面,从普通的开放的开放的开放球体中为DU-CU功能提供最大OPEX计算资源。在本文中,我们提议并比较了微移动式移动键公平性和Vickrey-Clake-Vickeral-Groves(VCG)拍卖基于拍卖法的功能,将基于拍卖的OPEX-公平性和Vickrey-Clark-Gral-Groves(VC)所有资源使用基于拍卖的OPEX总量降到最低水平,同时从常规的 RUS-RUS-RU 中提取真实的O-RE-ral IMLUS-RU 和OLISL) 中,我们认为,在使用常规的常规的 RU-RU-RU-LU-LU-LU-LU-S-S-S-S-LU-S-LU-LU-S-S-S-S-S-S-S-S-S-S-S-LV-LU-LIS-LIS-LIS-LU-LIS-LU-LV 的常规的系统(在使用中,在使用中,在使用中可以大量的节中可以大量的节中,我们-S-LU-S-S-S-L-L-RU-L-L-L-S-S-S-S-S-S-S-LV-LU-LUD-LU-LIS-LIS-LIS-LU-S-LIS-R-L-L-L-L-L-R-LIS-S-L-L-LIS-S-LIS-L-R-L-L-L-L-L-L-L-L-</s>

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【RecSys22教程】多阶段推荐系统的神经重排序,90页ppt
专知会员服务
25+阅读 · 2022年9月30日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月5日
Arxiv
0+阅读 · 2023年5月4日
Arxiv
12+阅读 · 2021年6月21日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员