Quantum codes typically rely on large numbers of degrees of freedom to achieve low error rates. However each additional degree of freedom introduces a new set of error mechanisms. Hence minimizing the degrees of freedom that a quantum code utilizes is helpful. One quantum error correction solution is to encode quantum information into one or more bosonic modes. We revisit rotation-invariant bosonic codes, which are supported on Fock states that are gapped by an integer $g$ apart, and the gap $g$ imparts number shift resilience to these codes. Intuitively, since phase operators and number shift operators do not commute, one expects a trade-off between resilience to number-shift and rotation errors. Here, we obtain results pertaining to the non-existence of approximate quantum error correcting $g$-gapped single-mode bosonic codes with respect to Gaussian dephasing errors. We show that by using arbitrarily many modes, $g$-gapped multi-mode codes can yield good approximate quantum error correction codes for any finite magnitude of Gaussian dephasing and amplitude damping errors.
翻译:量子代码通常依赖大量自由度来达到低误差率。 但是, 每一个额外的自由度通常都依靠大量自由度来达到低误差率。 因此, 将量子代码使用的自由度降到最低是有用的。 一个量子错误校正解决方案是将量子信息编码成一种或多种波音模式。 我们重新审视在福克州支持的旋转- 异态博索尼科代码,这些代码被一个整数美元分开, 差数$g美元使数字转换到这些代码的弹性。 自然地, 由于阶段操作者和数字转换操作者不通勤, 人们期望在数字转换错误和旋转错误之间的适量性发生交换。 在这里, 我们获得的结果是, 大约量量误差没有校正 $g的单位模式的单位波音代码。 我们显示, 通过使用任意的多种模式, $g$g的多模式可以得出任何数量定的高斯断裂和倾斜度误差的精确度误差值代码。