Optimism about the Internet's potential to bring the world together has been tempered by concerns about its role in inflaming the 'culture wars'. Via mass selection into like-minded groups, online society may be becoming more fragmented and polarized, particularly with respect to partisan differences. However, our ability to measure the social makeup of online communities, and in turn understand the social organization of online platforms, is limited by the pseudonymous, unstructured, and large-scale nature of digital discussion. We develop a neural embedding methodology to quantify the positioning of online communities along social dimensions by leveraging large-scale patterns of aggregate behaviour. Applying our methodology to 5.1B Reddit comments made in 10K communities over 14 years, we measure how the macroscale community structure is organized with respect to age, gender, and U.S. political partisanship. Examining political content, we find Reddit underwent a significant polarization event around the 2016 U.S. presidential election, and remained highly polarized for years afterward. Contrary to conventional wisdom, however, individual-level polarization is rare; the system-level shift in 2016 was disproportionately driven by the arrival of new and newly political users. Political polarization on Reddit is unrelated to previous activity on the platform, and is instead temporally aligned with external events. We also observe a stark ideological asymmetry, with the sharp increase in 2016 being entirely attributable to changes in right-wing activity. Our methodology is broadly applicable to the study of online interaction, and our findings have implications for the design of online platforms, understanding the social contexts of online behaviour, and quantifying the dynamics and mechanisms of online polarization.
翻译:对互联网将世界凝聚在一起的潜在潜力的乐观主义因人们对互联网在“文化战争”中作用的担忧而减弱。 通过将大量选择纳入志同道合的团体,在线社会可能会变得更加支离破碎和两极分化,特别是在党派差异方面。然而,我们衡量在线社区的社会构成的能力,并反过来理解在线平台的社会组织能力,却因数字讨论的假名化、无结构化和大规模性质而受到限制。我们开发了一个神经嵌入方法,通过利用大规模整体行为模式来量化在线社区在社会层面的定位。运用我们的方法对14年来在10K社群中发表的5.1B Reddit评论进行分化。我们衡量宏观社区结构如何在年龄、性别和美国政治党派关系上组织起来。我们发现Redit在2016年美国总统选举前后经历了一场重大的两极分化事件,并且多年来一直高度两极分化。然而,个人层面的两极分化是罕见的;我们2016年的系统一级对5BReddtal 的汇率变化与我们之前的政治-rodeal-rodeal 的汇率变化与前一极化活动不相适应,而导致了我们过去的政治-直对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对立性研究,是最近的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对立性研究是最近的对等的对等的对等的对立是最近的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对