Monocular height estimation plays a critical role in 3D perception for remote sensing, offering a cost-effective alternative to multi-view or LiDAR-based methods. While deep learning has significantly advanced the capabilities of monocular height estimation, these methods remain fundamentally limited by the availability of labeled data, which are expensive and labor-intensive to obtain at scale. The scarcity of high-quality annotations hinders the generalization and performance of existing models. To overcome this limitation, we propose leveraging large volumes of unlabeled data through a semi-supervised learning framework, enabling the model to extract informative cues from unlabeled samples and improve its predictive performance. In this work, we introduce TSE-Net, a self-training pipeline for semi-supervised monocular height estimation. The pipeline integrates teacher, student, and exam networks. The student network is trained on unlabeled data using pseudo-labels generated by the teacher network, while the exam network functions as a temporal ensemble of the student network to stabilize performance. The teacher network is formulated as a joint regression and classification model: the regression branch predicts height values that serve as pseudo-labels, and the classification branch predicts height value classes along with class probabilities, which are used to filter pseudo-labels. Height value classes are defined using a hierarchical bi-cut strategy to address the inherent long-tailed distribution of heights, and the predicted class probabilities are calibrated with a Plackett-Luce model to reflect the expected accuracy of pseudo-labels. We evaluate the proposed pipeline on three datasets spanning different resolutions and imaging modalities. Codes are available at https://github.com/zhu-xlab/tse-net.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员