Holographic near-eye displays offer ultra-compact form factors for VR/AR systems but rely on advanced computer-generated holography (CGH) algorithms to convert 3D scenes into interference patterns on spatial light modulators (SLMs). Conventional CGH typically generates smooth-phase holograms, limiting view-dependent effects and realistic defocus blur, while severely under-utilizing the SLM space-bandwidth product. We propose Random-phase Wave Splatting (RPWS), a unified wave optics rendering framework that converts arbitrary 3D representations based on 2D translucent primitives into random-phase holograms. RPWS is fully compatible with modern 3D representations such as Gaussians and triangles, improves bandwidth utilization which effectively enlarges eyebox size, reconstructs accurate defocus blur and parallax, and leverages time-multiplexed rendering not as a heuristic for speckle suppression, but as a mathematically exact alpha-blending mechanism derived from first principles in statistics. At the core of RPWS are (1) a new wavefront compositing procedure and (2) an alpha-blending scheme for random-phase geometric primitives, ensuring correct color reconstruction and robust occlusion when compositing millions of primitives. RPWS departs substantially from the recent primitive-based CGH algorithm, Gaussian Wave Splatting (GWS). Because GWS uses smooth-phase primitives, it struggles to capture view-dependent effects and realistic defocus blur and under-utilizes the SLM space-bandwidth product; moreover, naively extending GWS to random-phase primitives fails to reconstruct accurate colors. In contrast, RPWS is designed from the ground up for arbitrary random-phase translucent primitives, and through simulations and experimental validations we demonstrate state-of-the-art image quality and perceptually faithful 3D holograms for next-generation near-eye displays.
翻译:全息近眼显示器为VR/AR系统提供了超紧凑的外形尺寸,但依赖于先进的计算机生成全息术(CGH)算法将3D场景转换为空间光调制器(SLM)上的干涉图案。传统的CGH通常生成平滑相位全息图,这限制了视角相关效应和真实的离焦模糊,并且严重未充分利用SLM的空间带宽积。我们提出随机相位波溅射(RPWS),这是一个统一的波动光学渲染框架,可将基于2D半透明基元的任意3D表示转换为随机相位全息图。RPWS完全兼容现代3D表示(如高斯和三角形),提高了带宽利用率从而有效扩大眼盒尺寸,重建了准确的离焦模糊和视差,并利用时分复用渲染——不是作为散斑抑制的启发式方法,而是作为从统计学第一性原理推导出的数学上精确的alpha混合机制。RPWS的核心是(1)一种新的波前合成过程,以及(2)针对随机相位几何基元的alpha混合方案,确保在合成数百万个基元时实现正确的颜色重建和稳健的遮挡。RPWS与近期基于基元的CGH算法——高斯波溅射(GWS)有显著不同。由于GWS使用平滑相位基元,它难以捕捉视角相关效应和真实的离焦模糊,并且未充分利用SLM的空间带宽积;此外,简单地将GWS扩展到随机相位基元无法重建准确的颜色。相比之下,RPWS是从头开始为任意随机相位半透明基元设计的,并且通过仿真和实验验证,我们展示了面向下一代近眼显示器的先进图像质量和感知上真实的3D全息图。