A new nonlinear hyperelastic bending model for shells formulated directly in surface form is presented, and compared to four prominently used bending models. Through an essential set of elementary nonlinear bending test cases, the stresses and moments of each model are examined analytically. Only the proposed bending model passes all the test cases while the other bending models either fail or only pass the test cases for small deformations. The proposed new bending model can handle large deformations and initially curved surfaces. It is based on the principal curvatures and their directions in the initial configuration, and it thus can have different bending moduli along those directions. These characteristics make it flexible in modeling a given material, while it does not suffer from the pathologies of existing bending models. Further, the bending models are compared computationally through four classical benchmark examples and one contact example. As the underlying shell theory is based on Kirchhoff-Love kinematics, isogeometric NURBS shape functions are used to discretize the shell surface. The linearization and efficient finite element implementation of the proposed new model are also provided.
翻译:本文提出了一种新的针对壳体直接表面形式下的非线性超弹性弯曲模型,并将其与四种常用弯曲模型进行比较。通过基本的非线性弯曲测试用例,对各模型的应力和力矩进行了分析。只有本文提出的弯曲模型能够通过所有测试用例,而其他弯曲模型则或者失败或者仅能通过小变形时的测试用例。本文提出的新型弯曲模型可以处理大变形和初始曲面。它基于初始构型中的主曲率和其方向,因此可以在这些方向上具有不同的弯曲模量。这些特性使得本模型在建模给定材料时具有灵活性,同时无需遭受现有弯曲模型的病态。此外,通过四个经典的基准实例和一个接触实例进行了弯曲模型的计算比较。由于基本的壳体理论基于Kirchhoff-Love运动学,所以采用等几何NURBS形状函数对壳体表面进行离散化。本文还提供了该新模型的线性化和高效有限元实现。