With the rise of automation, unmanned vehicles became a hot topic both as commercial products and as a scientific research topic. It composes a multi-disciplinary field of robotics that encompasses embedded systems, control theory, path planning, Simultaneous Localization and Mapping (SLAM), scene reconstruction, and pattern recognition. In this work, we present our exploratory research of how sensor data fusion and state-of-the-art machine learning algorithms can perform the Embodied Artificial Intelligence (E-AI) task called Visual Semantic Navigation. This task, a.k.a Object-Goal Navigation (ObjectNav) consists of autonomous navigation using egocentric visual observations to reach an object belonging to the target semantic class without prior knowledge of the environment. Our method reached fourth place on the Habitat Challenge 2021 ObjectNav on the Minival phase and the Test-Standard Phase.
翻译:随着自动化的兴起,无人驾驶飞行器既成为商业产品,又成为科学研究主题,成为机器人的多学科领域,包括嵌入系统、控制理论、路径规划、同步本地化和绘图(SLAM)、现场重建以及模式识别。在这项工作中,我们介绍了关于传感器数据融合和最先进的机器学习算法如何能完成“视觉语义导航”的人工成形智能(E-AI)任务的探索性研究。这一任务,即“目标导航(ObjectNav)”由自主导航组成,利用以自我中心为中心进行视觉观测,在不事先了解环境的情况下到达目标语义类的物体。我们的方法在Minival 阶段和测试-Standard 阶段的“生境挑战2021 物件Nav”中达到了第四位。