Sentiment analysis has benefited from the availability of lexicons and benchmark datasets created over decades of research. However, its applications to the real world are a driving force for research in SA. This chapter describes some of these applications and related challenges in real-life scenarios. In this chapter, we focus on five applications of SA: health, social policy, e-commerce, digital humanities and other areas of NLP. This chapter is intended to equip an NLP researcher with the `what', `why' and `how' of applications of SA: what is the application about, why it is important and challenging and how current research in SA deals with the application. We note that, while the use of deep learning techniques is a popular paradigm that spans these applications, challenges around privacy and selection bias of datasets is a recurring theme across several applications.
翻译:感官分析得益于数十年来研究所创建的词汇和基准数据集的可用性,然而,在现实世界的应用是南澳大利亚州研究的动力。本章描述了这些应用和现实生活中的一些相关挑战。本章侧重于南澳大利亚州五个应用:健康、社会政策、电子商务、数字人文学科和《国家劳工规划》的其他领域。本章旨在为国家劳工规划研究人员配备“什么”、“为什么”和“如何”应用南澳大利亚州应用的“什么”、“为什么”和“如何”:应用的内容是什么,为什么重要和具有挑战性,以及南澳大利亚州当前研究如何应对应用。我们注意到,虽然深层次学习技术的使用是覆盖这些应用的流行范例,但围绕隐私和数据集选择偏向的挑战是几个应用中反复出现的主题。