The recent advances in language modeling significantly improved the generative capabilities of deep neural models: in 2019 OpenAI released GPT-2, a pre-trained language model that can autonomously generate coherent, non-trivial and human-like text samples. Since then, ever more powerful text generative models have been developed. Adversaries can exploit these tremendous generative capabilities to enhance social bots that will have the ability to write plausible deepfake messages, hoping to contaminate public debate. To prevent this, it is crucial to develop deepfake social media messages detection systems. However, to the best of our knowledge no one has ever addressed the detection of machine-generated texts on social networks like Twitter or Facebook. With the aim of helping the research in this detection field, we collected the first dataset of \real deepfake tweets, TweepFake. It is real in the sense that each deepfake tweet was actually posted on Twitter. We collected tweets from a total of 23 bots, imitating 17 human accounts. The bots are based on various generation techniques, i.e., Markov Chains, RNN, RNN+Markov, LSTM, GPT-2. We also randomly selected tweets from the humans imitated by the bots to have an overall balanced dataset of 25,572 tweets (half human and half bots generated). The dataset is publicly available on Kaggle. Lastly, we evaluated 13 deepfake text detection methods (based on various state-of-the-art approaches) to both demonstrate the challenges that Tweepfake poses and create a solid baseline of detection techniques. We hope that TweepFake can offer the opportunity to tackle the deepfake detection on social media messages as well.
翻译:最近在语言模型方面的进步大大改善了深神经模型的遗传能力:2019年,OpenAI公司发布了GPT-2,这是一个经过预先训练的语言模型,可以自动生成连贯、非三角和人文文本样本。从那时以来,已经开发出更强大的文本基因模型。对立人可以利用这些巨大的基因模型来增强社会机器人的能力,这些机器人将能够写出令人难以置信的深假信息,从而污染公众辩论。为了防止这种情况,必须开发深层的社交媒体探测系统。然而,根据我们的知识,没有人曾经处理过在Twitter或Facebook等社交网络上检测机器生成的文本。为了帮助这一检测领域的研究,我们收集了第一套更强大的文本。从这个意义上讲,每个深度的种子都有能力在Twitter上发布令人印象深刻的信息。我们从总共23个机器人收集了推特,模拟了17个人类账号。 机器人的功能状态是基于各种新一代技术,例如,Markov链、RNNE+Markovs。我们收集了25 人类推特的随机数据,我们也可以在Twitter上提供一个平衡的数据。