Knowledge Graphs (KGs) often have two characteristics: heterogeneous graph structure and text-rich entity/relation information. KG representation models should consider graph structures and text semantics, but no comprehensive open-sourced framework is mainly designed for KG regarding informative text description. In this paper, we present PromptKG, a prompt learning framework for KG representation learning and application that equips the cutting-edge text-based methods, integrates a new prompt learning model and supports various tasks (e.g., knowledge graph completion, question answering, recommendation, and knowledge probing). PromptKG is publicly open-sourced at https://github.com/zjunlp/PromptKG with long-term technical support.
翻译:知识图(KGs)通常有两个特点:多式图表结构和文本丰富的实体/关系信息。KG代表模式应考虑图表结构和文字语义学,但主要为KG设计的关于信息文字描述的综合性开放源码框架并不主要为KG设计。在本文中,我们介绍了PerentKG,这是KG代表学习和应用的快速学习框架,它为最先进的基于文本的方法提供了设备,整合了一个新的快速学习模式并支持了各种任务(例如,知识图的完成、问题回答、建议和知识检验)。PreadKG在https://github.com/zjunlp/PromptKG上公开开放源码,提供长期技术支持。