We propose a definition of persistent Stiefel-Whitney classes of vector bundle filtrations. It relies on seeing vector bundles as subsets of some Euclidean spaces. The usual \v{C}ech filtration of such a subset can be endowed with a vector bundle structure, that we call a \v{C}ech bundle filtration. We show that this construction is stable and consistent. When the dataset is a finite sample of a line bundle, we implement an effective algorithm to compute its persistent Stiefel-Whitney classes. In order to use simplicial approximation techniques in practice, we develop a notion of weak simplicial approximation. As a theoretical example, we give an in-depth study of the normal bundle of the circle, which reduces to understanding the persistent cohomology of the torus knot (1,2). We illustrate our method on several datasets inspired by image analysis.
翻译:我们建议定义持久性的Stiefel- Whitney 矢量捆绑过滤类别。 它依赖于将矢量捆绑作为某些欧洲clidean 空间的子子集。 通常的子集过滤技术可以配有矢量捆绑结构, 我们称之为 \ v{C} CHitney 捆绑过滤。 我们显示此构造是稳定且一致的。 当数据集是线条捆绑的有限样本时, 我们实施有效的算法来计算其持久性的 Stiefel- Whitney 分类。 为了在实践中使用简易近似技术, 我们开发了一个微弱的简单近似近似概念。 作为理论上的例子, 我们深入研究了圆圈的正常捆绑, 从而减少了对结的持久共振学(1, 2) 的理解。 我们用图像分析所启发的多个数据集来说明我们的方法 。