Density ratio estimation is fundamental to tasks involving $f$-divergences, yet existing methods often fail under significantly different distributions or inadequately overlapping supports -- the density-chasm and the support-chasm problems. Additionally, prior approaches yield divergent time scores near boundaries, leading to instability. We design $\textbf{D}^3\textbf{RE}$, a unified framework for \textbf{robust}, \textbf{stable} and \textbf{efficient} density ratio estimation. We propose the dequantified diffusion bridge interpolant (DDBI), which expands support coverage and stabilizes time scores via diffusion bridges and Gaussian dequantization. Building on DDBI, the proposed dequantified Schr{\"o}dinger bridge interpolant (DSBI) incorporates optimal transport to solve the Schr{\"o}dinger bridge problem, enhancing accuracy and efficiency. Our method offers uniform approximation and bounded time scores in theory, and outperforms baselines empirically in mutual information and density estimation tasks.
翻译:密度比估计是涉及$f$散度任务的基础,然而现有方法在分布差异显著或支撑集重叠不足时往往失效——即密度鸿沟与支撑集鸿沟问题。此外,先前方法在边界附近产生发散的时间分数,导致不稳定性。我们设计了$\\textbf{D}^3\\textbf{RE}$,一个用于\\textbf{鲁棒}、\\textbf{稳定}且\\textbf{高效}密度比估计的统一框架。我们提出了去量化扩散桥插值器(DDBI),通过扩散桥与高斯去量化技术扩展支撑集覆盖范围并稳定时间分数。基于DDBI,进一步提出去量化薛定谔桥插值器(DSBI),结合最优传输求解薛定谔桥问题,提升精度与效率。我们的方法在理论上提供一致逼近和有界时间分数,并在互信息与密度估计任务中实证优于基线方法。