We extend several recent results providing symmetry-based guarantees for variational inference (VI) with location-scale families. VI approximates a target density $p$ by the best match $q^*$ in a family $Q$ of tractable distributions that in general does not contain $p$. It is known that VI can recover key properties of $p$, such as its mean and correlation matrix, when $p$ and $Q$ exhibit certain symmetries and $q^*$ is found by minimizing the reverse Kullback-Leibler divergence. We extend these guarantees in two important directions. First, we provide symmetry-based guarantees for $f$-divergences, a broad class that includes the reverse and forward Kullback-Leibler divergences and the $α$-divergences. We highlight properties specific to the reverse Kullback-Leibler divergence under which we obtain our strongest guarantees. Second, we obtain further guarantees for VI when the target density $p$ exhibits even and elliptical symmetries in some but not all of its coordinates. These partial symmetries arise naturally in Bayesian hierarchical models, where the prior induces a challenging geometry but still possesses axes of symmetry. We illustrate these theoretical results in a number of experimental settings.


翻译:我们扩展了近期关于基于对称性为变分推断(VI)提供保证的若干结果,这些结果针对位置-尺度族。VI通过在一个一般不含目标密度$p$的易处理分布族$Q$中寻找最佳匹配$q^*$来近似$p$。已知当$p$和$Q$呈现特定对称性且$q^*$通过最小化反向Kullback-Leibler散度得到时,VI能够恢复$p$的关键性质,如均值和相关矩阵。我们在两个重要方向上扩展了这些保证。首先,我们为$f$-散度这一广泛类别(包含反向与正向Kullback-Leibler散度以及$α$-散度)提供了基于对称性的保证。我们特别强调了反向Kullback-Leibler散度在特定性质下能获得最强保证的条件。其次,当目标密度$p$在其部分(而非全部)坐标上呈现偶对称与椭圆对称时,我们为VI获得了进一步的保证。这种部分对称性在贝叶斯层次模型中自然出现,其中先验会引入复杂的几何结构但仍保持对称轴。我们在多个实验场景中验证了这些理论结果。

0
下载
关闭预览

相关内容

【ICLR2022】GNN-LM基于全局信息的图神经网络语义理解模型
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
50+阅读 · 2021年6月2日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ICLR2022】GNN-LM基于全局信息的图神经网络语义理解模型
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
50+阅读 · 2021年6月2日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员