End-to-end AutoML has attracted intensive interests from both academia and industry, which automatically searches for ML pipelines in a space induced by feature engineering, algorithm/model selection, and hyper-parameter tuning. Existing AutoML systems, however, suffer from scalability issues when applying to application domains with large, high-dimensional search spaces. We present VolcanoML, a scalable and extensible framework that facilitates systematic exploration of large AutoML search spaces. VolcanoML introduces and implements basic building blocks that decompose a large search space into smaller ones, and allows users to utilize these building blocks to compose an execution plan for the AutoML problem at hand. VolcanoML further supports a Volcano-style execution model - akin to the one supported by modern database systems - to execute the plan constructed. Our evaluation demonstrates that, not only does VolcanoML raise the level of expressiveness for search space decomposition in AutoML, it also leads to actual findings of decomposition strategies that are significantly more efficient than the ones employed by state-of-the-art AutoML systems such as auto-sklearn.


翻译:终端到终端自动移动系统吸引了学术界和工业界的浓厚兴趣,它们自动在地貌工程、算法/模型选择和超参数调控所引发的空间中搜索ML输油管。但是,现有的自动移动系统在应用具有大、高维搜索空间的应用领域时会遇到可缩放问题。我们提出了可扩缩和可扩展的火山漂流框架,便于系统地探索大型自动移动搜索空间。VolcanoML引入并实施了将大型搜索空间分解成较小搜索空间的基本构件,并允许用户利用这些构件制定手头自动移动系统问题的执行计划。VolcanoML进一步支持火山式执行模式,类似于现代数据库系统所支持的模式。我们的评估表明,火山不仅提高了在自动移动中搜索空间分解的清晰度,而且还导致实际发现分解战略比诸如自动滑动等州级自动移动系统所使用的战略效率要高得多。

0
下载
关闭预览

相关内容

【XAUTOML】可解释自动机器学习,27页ppt
专知会员服务
62+阅读 · 2021年4月23日
专知会员服务
29+阅读 · 2020年12月14日
【2020新书】数据科学与机器学习导论,220页pdf
专知会员服务
80+阅读 · 2020年9月14日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
86+阅读 · 2020年5月11日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
概述自动机器学习(AutoML)
人工智能学家
19+阅读 · 2019年8月11日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
AutoML 和神经架构搜索初探
极市平台
9+阅读 · 2018年8月8日
已删除
清华大学研究生教育
3+阅读 · 2018年6月30日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Arxiv
0+阅读 · 2021年9月17日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
Arxiv
5+阅读 · 2018年9月11日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
5+阅读 · 2018年3月16日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
【XAUTOML】可解释自动机器学习,27页ppt
专知会员服务
62+阅读 · 2021年4月23日
专知会员服务
29+阅读 · 2020年12月14日
【2020新书】数据科学与机器学习导论,220页pdf
专知会员服务
80+阅读 · 2020年9月14日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
86+阅读 · 2020年5月11日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
概述自动机器学习(AutoML)
人工智能学家
19+阅读 · 2019年8月11日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
AutoML 和神经架构搜索初探
极市平台
9+阅读 · 2018年8月8日
已删除
清华大学研究生教育
3+阅读 · 2018年6月30日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
相关论文
Arxiv
0+阅读 · 2021年9月17日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
Arxiv
5+阅读 · 2018年9月11日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
5+阅读 · 2018年3月16日
Arxiv
3+阅读 · 2018年2月24日
Top
微信扫码咨询专知VIP会员