Motion estimation is a fundamental step in dynamic medical image processing for the assessment of target organ anatomy and function. However, existing image-based motion estimation methods, which optimize the motion field by evaluating the local image similarity, are prone to produce implausible estimation, especially in the presence of large motion. In this study, we provide a novel motion estimation framework of Dense-Sparse-Dense (DSD), which comprises two stages. In the first stage, we process the raw dense image to extract sparse landmarks to represent the target organ anatomical topology and discard the redundant information that is unnecessary for motion estimation. For this purpose, we introduce an unsupervised 3D landmark detection network to extract spatially sparse but representative landmarks for the target organ motion estimation. In the second stage, we derive the sparse motion displacement from the extracted sparse landmarks of two images of different time points. Then, we present a motion reconstruction network to construct the motion field by projecting the sparse landmarks displacement back into the dense image domain. Furthermore, we employ the estimated motion field from our two-stage DSD framework as initialization and boost the motion estimation quality in light-weight yet effective iterative optimization. We evaluate our method on two dynamic medical imaging tasks to model cardiac motion and lung respiratory motion, respectively. Our method has produced superior motion estimation accuracy compared to existing comparative methods. Besides, the extensive experimental results demonstrate that our solution can extract well representative anatomical landmarks without any requirement of manual annotation. Our code is publicly available online.
翻译:运动估算是评估目标器官解剖和功能的动态医学图像处理过程中的一个根本步骤。然而,现有的基于图像的动作估算方法,通过评估当地图像相似性优化运动场,从而优化运动场,容易产生不可信的估计,特别是在出现大规模运动的情况下。在本研究中,我们提供了一个包含两个阶段的DSD(DSD)新颖运动估算框架。在第一阶段,我们处理原始密集的图像,提取稀少的标志,以代表目标器官解剖和功能,并放弃对运动估计不必要的冗余信息。为此,我们引入一个不受监督的3D里程碑检测网络,为目标器官运动估算提取空间稀少但具有代表性的里程碑。在第二阶段,我们从两个不同时间点的提取的稀疏的图像标点中得出了微动的动作估算。然后,我们提出一个运动重建网络,通过将稀少的标志迁移到任何密集的图像域域。此外,我们利用我们两阶段DSD框架的估计运动场作为初始化和升级的在线评估,从而提升我们现有的呼吸系统模型的升级质量。我们用光重的模型来评估我们现有的试测方法。