In this paper, we propose a robust secure transmission scheme for an active reconfigurable intelligent surface (RIS) enabled symbiotic radio (SR) system in the presence of multiple eavesdroppers (Eves). In the considered system, the active RIS is adopted to enable the secure transmission of primary signals from the primary transmitter to multiple primary users in a multicasting manner, and simultaneously achieve its own information delivery to the secondary user by riding over the primary signals. Taking into account the imperfect channel state information (CSI) related with Eves, we formulate the system power consumption minimization problem by optimizing the transmit beamforming and reflection beamforming for the bounded and statistical CSI error models, taking the worst-case SNR constraints and the SNR outage probability constraints at the Eves into considerations, respectively. Specifically, the S-Procedure and the Bernstein-Type Inequality are implemented to approximately transform the worst-case SNR and the SNR outage probability constraints into tractable forms, respectively. After that, the formulated problems can be solved by the proposed alternating optimization (AO) algorithm with the semi-definite relaxation and sequential rank-one constraint relaxation techniques. Numerical results show that the proposed active RIS scheme can reduce up to 27.0% system power consumption compared to the passive RIS.


翻译:本文提出了一种智能可重构表面(RIS)辅助下的共生式无线(SR)系统的鲁棒安全传输方案,可在多个窃听者(Eve)存在的情况下进行。在考虑到与Eve相关的不完美信道状态信息(CSI)的情况下,我们通过优化发射波束和反射波束,针对有界和统计CSI误差模型,以最小化系统能耗为目标,同时考虑到最坏情况下的信噪比(SNR)约束和Eve的SNR中断概率约束。具体地,采用S-Procedure和Bernstein-Type不等式将最坏情况下的SNR和SNR中断概率约束近似转化为可处理的形式。在此基础上,本文采用半定松弛和序列秩一约束松弛技术,通过建议的交替优化(AO)算法求解了这些问题。数值结果表明,相较于被动RIS,所提出的主动RIS方案可以将系统能耗降低高达27.0%。

0
下载
关闭预览

相关内容

【2023新书】随机模型基础,815页pdf
专知会员服务
101+阅读 · 2023年5月10日
干货书!基于单调算子的大规模凸优化,348页pdf
专知会员服务
48+阅读 · 2022年7月24日
专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【动态】第四届新一代计算机动画技术研讨会成功举办
中国图象图形学学会CSIG
0+阅读 · 2022年7月25日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
【2023新书】随机模型基础,815页pdf
专知会员服务
101+阅读 · 2023年5月10日
干货书!基于单调算子的大规模凸优化,348页pdf
专知会员服务
48+阅读 · 2022年7月24日
专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员