The so-called block-term decomposition (BTD) tensor model, especially in its rank-$(L_r,L_r,1)$ version, has been recently receiving increasing attention due to its enhanced ability of representing systems and signals that are composed of \emph{block} components of rank higher than one, a scenario encountered in numerous and diverse applications. Its uniqueness and approximation have thus been thoroughly studied. The challenging problem of estimating the BTD model structure, namely the number of block terms (rank) and their individual (block) ranks, is of crucial importance in practice and has only recently started to attract significant attention. In data-streaming scenarios and/or big data applications, where the tensor dimension in one of its modes grows in time or can only be processed incrementally, it is essential to be able to perform model selection and computation in a recursive (incremental/online) manner. To date there is only one such work in the literature concerning the (general rank-$(L,M,N)$) BTD model, which proposes an incremental method, however with the BTD rank and block ranks assumed to be a-priori known and time invariant. In this preprint, a novel approach to rank-$(L_r,L_r,1)$ BTD model selection and tracking is proposed, based on the idea of imposing column sparsity jointly on the factors and estimating the ranks as the numbers of factor columns of nonnegligible magnitude. An online method of the alternating iteratively reweighted least squares (IRLS) type is developed and shown to be computationally efficient and fast converging, also allowing the model ranks to change in time. Its time and memory efficiency are evaluated and favorably compared with those of the batch approach. Simulation results are reported that demonstrate the effectiveness of the proposed scheme in both selecting and tracking the correct BTD model.


翻译:所谓的轮廓分解(BTD) 软体模型(BTD), 特别是其级数- 美元(L_r,L_r,1) 版本,最近受到越来越多的关注,因为其代表系统和信号的能力得到加强,这些系统和信号由排名高于一的\emph{block}元件组成,这是在众多和多种应用中遇到的一种假设。因此,对它的独特性和近似性进行了透彻的研究。估算BTD模型结构的难度问题,即轮廓(级数)数量(级数)及其单个(级数)级数(级数),在实践中至关重要,而且直到最近才开始引起人们的注意。在数据流情景假设和/或大数据应用程序中,其模式中的一种代号数在时间上逐渐增加,B型数的升数在时间上逐渐增加,而B级和B级的递增值则被假定为快速计算。到目前为止,关于(一般级数- 级数- (L,M,N) 和直行数级数级数在文献中,B级和直位数的递增的递增方法显示的是,在B级中显示的级和直序- 直序- 预值的递变。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
[SIGIR2021]可复现推荐系统评估的全面和严谨的框架
专知会员服务
21+阅读 · 2021年4月30日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Arxiv
6+阅读 · 2020年12月8日
Arxiv
3+阅读 · 2018年12月21日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Top
微信扫码咨询专知VIP会员