Recognizing fine-grained actions from temporally corrupted skeleton sequences remains a significant challenge, particularly in real-world scenarios where online pose estimation often yields substantial missing data. Existing methods often struggle to accurately recover temporal dynamics and fine-grained spatial structures, resulting in the loss of subtle motion cues crucial for distinguishing similar actions. To address this, we propose FineTec, a unified framework for Fine-grained action recognition under Temporal Corruption. FineTec first restores a base skeleton sequence from corrupted input using context-aware completion with diverse temporal masking. Next, a skeleton-based spatial decomposition module partitions the skeleton into five semantic regions, further divides them into dynamic and static subgroups based on motion variance, and generates two augmented skeleton sequences via targeted perturbation. These, along with the base sequence, are then processed by a physics-driven estimation module, which utilizes Lagrangian dynamics to estimate joint accelerations. Finally, both the fused skeleton position sequence and the fused acceleration sequence are jointly fed into a GCN-based action recognition head. Extensive experiments on both coarse-grained (NTU-60, NTU-120) and fine-grained (Gym99, Gym288) benchmarks show that FineTec significantly outperforms previous methods under various levels of temporal corruption. Specifically, FineTec achieves top-1 accuracies of 89.1% and 78.1% on the challenging Gym99-severe and Gym288-severe settings, respectively, demonstrating its robustness and generalizability. Code and datasets could be found at https://smartdianlab.github.io/projects-FineTec/.
翻译:从时序损坏的骨架序列中识别细粒度动作仍然是一个重大挑战,尤其是在现实场景中,在线姿态估计常常产生大量缺失数据。现有方法通常难以准确恢复时序动态和细粒度空间结构,导致丢失对区分相似动作至关重要的细微运动线索。为解决此问题,我们提出了FineTec,一个用于时序损坏下细粒度动作识别的统一框架。FineTec首先通过上下文感知补全与多样化时序掩码,从损坏的输入中恢复一个基础骨架序列。接着,一个基于骨架的空间分解模块将骨架划分为五个语义区域,并根据运动方差进一步将其划分为动态和静态子组,通过针对性扰动生成两个增强的骨架序列。这些序列连同基础序列随后由一个物理驱动的估计模块处理,该模块利用拉格朗日动力学来估计关节加速度。最后,融合后的骨架位置序列和融合后的加速度序列被共同输入到一个基于GCN的动作识别头中。在粗粒度(NTU-60, NTU-120)和细粒度(Gym99, Gym288)基准上的大量实验表明,FineTec在不同程度的时序损坏下均显著优于先前的方法。具体而言,FineTec在具有挑战性的Gym99-severe和Gym288-severe设置下分别达到了89.1%和78.1%的top-1准确率,证明了其鲁棒性和泛化能力。代码和数据集可在 https://smartdianlab.github.io/projects-FineTec/ 找到。