Gradient boosting decision tree (GBDT) is a widely used ensemble algorithm in the industry. Its vertical federated learning version, SecureBoost, is one of the most popular algorithms used in cross-silo privacy-preserving modeling. As the area of privacy computation thrives in recent years, demands for large-scale and high-performance federated learning have grown dramatically in real-world applications. In this paper, to fulfill these requirements, we propose SecureBoost+ that is both novel and improved from the prior work SecureBoost. SecureBoost+ integrates several ciphertext calculation optimizations and engineering optimizations. The experimental results demonstrate that Secureboost+ has significant performance improvements on large and high dimensional data sets compared to SecureBoost. It makes effective and efficient large-scale vertical federated learning possible.


翻译:渐进式提升决策树(GBDT)是该行业广泛使用的混合算法。 它的垂直联合学习版本“ SecureBoost ” 是跨硅隐私保护模型中最受欢迎的算法之一。 近年来,随着隐私计算领域的兴旺发展,大规模和高性能联合学习的需求在现实世界应用中急剧增长。 为了满足这些要求,我们在此文件中提议“ SecureBoost + ”, 它与先前的工作“ SecurityBoost” 相比是新颖的,并得到了改进。 “ SecurityBoost+” 整合了数种密码计算优化和工程优化。实验结果显示“ Securebowst+”与“SecureBoost”相比,在大型和高维数据集上取得了显著的性能改进。 它使得高效的大型垂直联合学习成为可能。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
专知会员服务
63+阅读 · 2021年1月10日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2019年5月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Arxiv
10+阅读 · 2021年3月30日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
Asymmetrical Vertical Federated Learning
Arxiv
3+阅读 · 2020年6月11日
Arxiv
3+阅读 · 2020年5月1日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
VIP会员
相关VIP内容
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2019年5月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
相关论文
Arxiv
10+阅读 · 2021年3月30日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
Asymmetrical Vertical Federated Learning
Arxiv
3+阅读 · 2020年6月11日
Arxiv
3+阅读 · 2020年5月1日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Top
微信扫码咨询专知VIP会员