In a network meta-analysis, some of the collected studies may deviate markedly from the others, for example having very unusual effect sizes. These deviating studies can be regarded as outlying with respect to the rest of the network and can be influential on the pooled results. Thus, it could be inappropriate to synthesize those studies without further investigation. In this paper, we propose two Bayesian methods to detect outliers in a network meta-analysis via: (a) a mean-shifted outlier model and (b), posterior predictive p-values constructed from ad-hoc discrepancy measures. The former method uses Bayes factors to formally test each study against outliers while the latter provides a score of outlyingness for each study in the network, which allows to numerically quantify the uncertainty associated with being outlier. Furthermore, we present a simple method based on informative priors as part of the network meta-analysis model to down-weight the detected outliers. We conduct extensive simulations to evaluate the effectiveness of the proposed methodology while comparing it to some alternative, available outlier diagnostic tools. Two real networks of interventions are then used to demonstrate our methods in practice.
翻译:在网络元分析中,所收集的一些研究可能与其它研究明显不同,例如具有非常不寻常的影响大小。这些偏离研究可被视为网络其余部分的外向,对集合结果有影响。因此,不经进一步调查就综合这些研究可能不妥。在本文中,我们提出两种巴伊西亚方法,通过下列方式在网络元分析中检测外向值:(a) 一种中转外向模型和(b) 利用特殊偏差措施构建的后向预测值。前一种方法使用巴伊系数正式测试每项研究的外向值,而后一种方法则提供网络每项研究的外向值分数,这样可以从数字上量化与外向有关的不确定性。此外,我们提出一种简单的方法,以信息前向为基础,作为网络元分析模型的一部分,以缩小所检测的外向值。我们进行了广泛的模拟,以评估拟议方法的有效性,同时将之与某些可用的外部诊断工具进行比较。然后使用两个真正的干预网络来展示我们的实际方法。