Demand for data-intensive workloads and confidential computing are the prominent research directions shaping the future of cloud computing. Computer architectures are evolving to accommodate the computing of large data better. Protecting the computation of sensitive data is also an imperative yet challenging objective; processor-supported secure enclaves serve as the key element in confidential computing in the cloud. However, side-channel attacks are threatening their security boundaries. The current processor architectures consume a considerable portion of its cycles in moving data. Near data computation is a promising approach that minimizes redundant data movement by placing computation inside storage. In this paper, we present a novel design for Processing-In-Memory (PIM) as a data-intensive workload accelerator for confidential computing. Based on our observation that moving computation closer to memory can achieve efficiency of computation and confidentiality of the processed information simultaneously, we study the advantages of confidential computing \emph{inside} memory. We then explain our security model and programming model developed for PIM-based computation offloading. We construct our findings into a software-hardware co-design, which we call PIM-Enclave. Our design illustrates the advantages of PIM-based confidential computing acceleration. Our evaluation shows PIM-Enclave can provide a side-channel resistant secure computation offloading and run data-intensive applications with negligible performance overhead compared to baseline PIM model.
翻译:对数据密集型工作量和机密计算的需求是决定云计算未来的重要研究方向。计算机结构正在演变,以更好地计算大型数据。保护敏感数据的计算也是一个必要但具有挑战性的目标;处理者支持的安全飞地是云中机密计算的关键要素。然而,侧道袭击正在威胁其安全边界。目前的处理器结构在移动数据过程中消耗了相当大一部分的周期。近距离数据计算是一种有希望的方法,通过在存储器中进行计算,最大限度地减少多余的数据流动。在本文中,我们提出了一个新颖的处理-内模(PIM)设计,作为数据密集工作量的机密计算加速器。基于我们关于将计算更接近记忆的飞地作为云中机密计算的关键要素,我们研究了机密计算和保密信息保密的计算功能。我们随后解释了我们为基于模型的计算后卸载而开发的安全模型和编程模型模式。我们把我们的调查结果建成一个软件硬件联合设计,我们称之为PIM-Enclave(PIM-Enclave)作为数据密集工作量的加速计算工具。我们用加密的快速的计算机计算模型设计展示了一种安全性升级的自动计算工具的优势。我们用于快速的快速计算。我们计算机的计算机的快速计算的计算,可以展示一个用于加速的加速计算。我们运行的自动计算。