Text-to-image generative models are a new and powerful way to generate visual artwork. The free-form nature of text as interaction is double-edged; while users have access to an infinite range of generations, they also must engage in brute-force trial and error with the text prompt when the result quality is poor. We conduct a study exploring what prompt components and model parameters can help produce coherent outputs. In particular, we study prompts structured to include subject and style and investigate success and failure modes within these dimensions. Our evaluation of 5493 generations over the course of five experiments spans 49 abstract and concrete subjects as well as 51 abstract and figurative styles. From this evaluation, we present design guidelines that can help people find better outcomes from text-to-image generative models.


翻译:文字到图像的基因化模型是产生视觉艺术作品的一种新而有力的方法。 文本作为互动的一种自由形式的性质是双向的; 虽然用户可以接触无数代人,但是当结果质量差时,他们也必须与文本进行粗力试验和错误; 我们进行一项研究,探讨什么即时组件和模型参数能帮助产生一致的产出; 我们特别研究如何结构上的提示,以纳入主题和风格,并调查这些层面的成败模式。 我们在五个实验过程中对5493代人的评估涉及49个抽象和具体科目以及51个抽象和比喻风格。我们从这一评价中提出设计准则,可以帮助人们从文本到图像的基因模型中找到更好的结果。

0
下载
关闭预览

相关内容

【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
43+阅读 · 2020年9月11日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
已删除
将门创投
5+阅读 · 2018年7月25日
Arxiv
18+阅读 · 2020年10月9日
Using Scene Graph Context to Improve Image Generation
Arxiv
3+阅读 · 2018年4月3日
VIP会员
相关VIP内容
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
43+阅读 · 2020年9月11日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
Top
微信扫码咨询专知VIP会员