Bonus-Malus Systems traditionally consider a customer's number of claims irrespective of their sizes, even though these components are dependent in practice. We propose a novel joint experience rating approach based on latent Markovian risk profiles to allow for a positive or negative individual frequency-severity dependence. The latent profiles evolve over time in a Hidden Markov Model to capture updates in a customer's claims experience, making claim counts and sizes conditionally independent. We show that the resulting risk premia lead to a dynamic, claims experience-weighted mixture of standard credibility premia. The proposed approach is applied to a Dutch automobile insurance portfolio and identifies customer risk profiles with distinctive claiming behavior. These profiles, in turn, enable us to better distinguish between customer risks.


翻译:Bonus-Malus Systems传统上考虑客户的索赔数量,而不管其大小,尽管这些组成部分实际上取决于其大小,但我们提议根据潜在的Markovian风险简介采用新的共同经验评级办法,以便对个人的频率严重性产生正负依赖性。隐性Markov模型的潜在概况随着时间的推移而变化,以了解客户索赔经历的最新情况,使索赔的计数和数额有条件地独立。我们表明,由此产生的风险溢价导致一种动态的、索赔经验加权的标准可信度保险费组合。拟议办法适用于荷兰汽车保险投资组合,并查明客户风险简介与特别的声称行为。这些简介反过来使我们能够更好地区分客户风险。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月25日
Arxiv
3+阅读 · 2018年10月5日
Arxiv
3+阅读 · 2015年5月16日
VIP会员
相关VIP内容
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员