Synthetic Aperture Radar (SAR) imagery plays a critical role in all-weather, day-and-night remote sensing applications. However, existing SAR-oriented deep learning is constrained by data scarcity, while the physically grounded speckle noise in SAR imagery further hampers fine-grained semantic representation learning. To address these challenges, we propose SARMAE, a Noise-Aware Masked Autoencoder for self-supervised SAR representation learning. Specifically, we construct SAR-1M, the first million-scale SAR dataset, with additional paired optical images, to enable large-scale pre-training. Building upon this, we design Speckle-Aware Representation Enhancement (SARE), which injects SAR-specific speckle noise into masked autoencoders to facilitate noise-aware and robust representation learning. Furthermore, we introduce Semantic Anchor Representation Constraint (SARC), which leverages paired optical priors to align SAR features and ensure semantic consistency. Extensive experiments across multiple SAR datasets demonstrate that SARMAE achieves state-of-the-art performance on classification, detection, and segmentation tasks. Code and models will be available at https://github.com/MiliLab/SARMAE.
翻译:合成孔径雷达(SAR)图像在全天候、昼夜遥感应用中发挥着关键作用。然而,现有面向SAR的深度学习受限于数据稀缺性,而SAR图像中固有的物理散斑噪声进一步阻碍了细粒度语义表征学习。为应对这些挑战,我们提出了SARMAE,一种用于自监督SAR表征学习的噪声感知掩码自编码器。具体而言,我们构建了首个百万级SAR数据集SAR-1M,并辅以配对的可见光图像,以支持大规模预训练。在此基础上,我们设计了散斑感知表征增强模块(SARE),将SAR特有的散斑噪声注入掩码自编码器,以促进噪声感知且鲁棒的表征学习。此外,我们引入了语义锚点表征约束(SARC),利用配对可见光先验信息对齐SAR特征并确保语义一致性。在多个SAR数据集上的大量实验表明,SARMAE在分类、检测和分割任务上均达到了最先进的性能。代码与模型将在https://github.com/MiliLab/SARMAE公开。