Black-box machine learning learning methods are now routinely used in high-risk settings, like medical diagnostics, which demand uncertainty quantification to avoid consequential model failures. Distribution-free uncertainty quantification (distribution-free UQ) is a user-friendly paradigm for creating statistically rigorous confidence intervals/sets for such predictions. Critically, the intervals/sets are valid without distributional assumptions or model assumptions, possessing explicit guarantees even with finitely many datapoints. Moreover, they adapt to the difficulty of the input; when the input example is difficult, the uncertainty intervals/sets are large, signaling that the model might be wrong. Without much work and without retraining, one can use distribution-free methods on any underlying algorithm, such as a neural network, to produce confidence sets guaranteed to contain the ground truth with a user-specified probability, such as 90%. Indeed, the methods are easy-to-understand and general, applying to many modern prediction problems arising in the fields of computer vision, natural language processing, deep reinforcement learning, and so on. This hands-on introduction is aimed at a reader interested in the practical implementation of distribution-free UQ who is not necessarily a statistician. We lead the reader through the practical theory and applications of distribution-free UQ, beginning with conformal prediction and culminating with distribution-free control of any risk, such as the false-discovery rate, false positive rate of out-of-distribution detection, and so on. We will include many explanatory illustrations, examples, and code samples in Python, with PyTorch syntax. The goal is to provide the reader a working understanding of distribution-free UQ, allowing them to put confidence intervals on their algorithms, with one self-contained document.


翻译:在高风险环境中,如医学诊断,现在常规地使用黑盒机器学习方法,例如医疗诊断,这种诊断要求不确定性量化,以避免导致模型失败。无分配的不确定性量化(无分配的UQ)是一个方便用户的范例,用于为这种预测创建统计上严格的信心间隔/设置。关键地说,间隔/设置是有效的,没有分发假设或模型假设,即使有有限的许多数据点也拥有明确的保障。此外,它们适应输入困难;当输入实例困难时,不确定性间隔/设置很大,表明模型可能是错误的。如果不做很多工作和不进行再培训,人们可以对任何基本算法,例如神经网络,使用无分配的无分配方法,以便产生可靠的信心,以用户特定的可能性,例如90%的概率来控制地面真相。事实上,这些方法容易理解和笼统,适用于计算机愿景、自然语言处理、深度强化学习等领域出现的许多现代预测问题。这个直接介绍旨在让读者对无分配自由的UQ的运行过程感兴趣, 向读者们展示一个免费的运行和最终理解率,他一定地遵守目标分配率的传播率。我们通过一个免费的计算, 将一个正常的销售率,我们通过一个正常的计算, 将一个正常的销售率到一个正常的计算。

0
下载
关闭预览

相关内容

数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
42+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
18+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
22+阅读 · 2021年12月19日
Arxiv
30+阅读 · 2021年7月7日
VIP会员
相关VIP内容
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
42+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
18+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员