Evolutionary algorithms (EAs) have gained attention recently due to their success in neural architecture search (NAS). However, whereas traditional EAs draw much power from crossover operations, most evolutionary NAS methods deploy only mutation operators. The main reason is the permutation problem: The mapping between genotype and phenotype in traditional graph representations is many-to-one, leading to a disruptive effect of standard crossover. This work conducts the first theoretical analysis of the behaviors of crossover and mutation in the NAS context, and proposes a new crossover operator based on the shortest edit path (SEP) in graph space. The SEP crossover is shown to overcome the permutation problem, and as a result, offspring generated by the SEP crossover is theoretically proved to have a better expected improvement in terms of graph edit distance to global optimum, compared to mutation and standard crossover. Experiments further show that the SEP crossover significantly outperforms mutation and standard crossover on three state-of-the-art NAS benchmarks. The SEP crossover therefore allows taking full advantage of evolution in NAS, and potentially other similar design problems as well.
翻译:最近,由于神经结构搜索的成功,进化算法(EAs)引起了人们的注意。然而,传统EAs从交叉操作中吸引了很大的力量,而大多数进化型NAS方法则只部署突变操作员。主要的原因是变异问题:传统图形显示中的基因类型和苯型的绘图是多对一的,导致标准交叉的干扰效应。这项工作对NAS背景下的交叉和突变行为进行了首次理论分析,并基于图形空间中最短的编辑路径(SEP)提出新的交叉操作员。SEP交叉显示,SEP交叉可以克服变异问题,结果,SEP交叉生成的后代在理论上证明,在图形编辑距离以至全球最佳、与变异和标准交叉的距离方面有更好的预期改进。实验还进一步表明,SEP的交叉大大超越了NAS的外形和标准交叉在三个最先进的NAS基准上。因此,SEP交叉使得NAS的进化和潜在的类似设计问题能够充分利用进化。