We review the definition and main properties of differential subresultants in order to achieve their implementation in Maple, using the DEtools package. The focus is on computing GCRDs of ordinary differential operators with non necessarily rational coefficients. Determinant expressions provide explicit control, enabling the treatment of coefficients with parameters. Applications to commuting ordinary differential operators illustrate the effectiveness of the method.
翻译:本文回顾了微分子结式的定义与主要性质,旨在通过DEtools工具包实现其在Maple中的计算。重点研究具有非有理系数(未必为有理函数)的常微分算子最大公因式的计算。行列式表达式提供了显式控制,使得含参数系数的处理成为可能。通过对交换常微分算子的应用示例,验证了该方法的有效性。