Human eye gaze plays an important role in delivering information, communicating intent, and understanding others' mental states. Previous research shows that a robot's gaze can also affect humans' decision-making and strategy during an interaction. However, limited studies have trained humanoid robots on gaze-based data in human-robot interaction scenarios. Considering gaze impacts the naturalness of social exchanges and alters the decision process of an observer, it should be regarded as a crucial component in human-robot interaction. To investigate the impact of robot gaze on humans, we propose an embodied neural model for performing human-like gaze shifts. This is achieved by extending a social attention model and training it on eye-tracking data, collected by watching humans playing a game. We will compare human behavioral performances in the presence of a robot adopting different gaze strategies in a human-human cooperation game.
翻译:人类眼神在传递信息、传递意图和理解他人精神状态方面起着重要作用。 先前的研究显示,机器人的眼神也可以影响人类在互动过程中的决策和战略。 然而,有限的研究对人造机器人进行了关于人类机器人互动情景中基于视视线的数据的培训。 考虑到视力会影响社会交流的自然性质并改变观察者的决策过程,它应被视为人类机器人互动的一个关键组成部分。 为了调查机器人凝视对人类的影响,我们提出了一个体现的神经模型,用于进行人形眼神的转变。这是通过扩大社会关注模型和通过观看人类游戏收集的视线跟踪数据培训来实现的。 我们将比较在人类合作游戏中采用不同视觉策略的机器人面前的人类行为表现。