The empirical Orlicz norm based on a random sample is defined as a natural estimator of the Orlicz norm of a univariate probability distribution. A law of large numbers is derived under minimal assumptions. The latter extends readily to a linear and a nonparametric regression model. Secondly, sufficient conditions for a central limit theorem with a standard rate of convergence are supplied. The conditions for the CLT exclude certain canonical examples, such as the empirical sub-Gaussian norm of normally distributed random variables. For the latter, we discover a nonstandard rate of $n^{1/4} \log(n)^{-3/8}$, with a heavy-tailed, stable limit distribution. It is shown that in general, the empirical Orlicz norm does not admit any uniform rate of convergence for the class of distributions with bounded Orlicz norm.


翻译:基于随机样本的经验Orlicz范数被定义为单变量概率分布Orlicz范数的自然估计量。在最小假设条件下推导了大数定律。该定律可直接推广至线性及非参数回归模型。其次,为具有标准收敛速度的中心极限定理提供了充分条件。中心极限定理的条件排除了某些典型示例,例如正态分布随机变量的经验亚高斯范数。对于后者,我们发现了非标准收敛速度$n^{1/4} \log(n)^{-3/8}$,其极限分布具有重尾稳定特性。研究表明,对于Orlicz范数有界的分布类,经验Orlicz范数通常不存在一致收敛速度。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
21+阅读 · 2023年7月12日
Arxiv
12+阅读 · 2019年2月26日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
20+阅读 · 2018年1月17日
Arxiv
28+阅读 · 2017年12月6日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
21+阅读 · 2023年7月12日
Arxiv
12+阅读 · 2019年2月26日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
20+阅读 · 2018年1月17日
Arxiv
28+阅读 · 2017年12月6日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员