The empirical Orlicz norm based on a random sample is defined as a natural estimator of the Orlicz norm of a univariate probability distribution. A law of large numbers is derived under minimal assumptions. The latter extends readily to a linear and a nonparametric regression model. Secondly, sufficient conditions for a central limit theorem with a standard rate of convergence are supplied. The conditions for the CLT exclude certain canonical examples, such as the empirical sub-Gaussian norm of normally distributed random variables. For the latter, we discover a nonstandard rate of $n^{1/4} \log(n)^{-3/8}$, with a heavy-tailed, stable limit distribution. It is shown that in general, the empirical Orlicz norm does not admit any uniform rate of convergence for the class of distributions with bounded Orlicz norm.
翻译:基于随机样本的经验Orlicz范数被定义为单变量概率分布Orlicz范数的自然估计量。在最小假设条件下推导了大数定律。该定律可直接推广至线性及非参数回归模型。其次,为具有标准收敛速度的中心极限定理提供了充分条件。中心极限定理的条件排除了某些典型示例,例如正态分布随机变量的经验亚高斯范数。对于后者,我们发现了非标准收敛速度$n^{1/4} \log(n)^{-3/8}$,其极限分布具有重尾稳定特性。研究表明,对于Orlicz范数有界的分布类,经验Orlicz范数通常不存在一致收敛速度。