In this article, we consider transport networks with uncertain demands. Network dynamics are given by linear hyperbolic partial differential equations and suitable coupling conditions, while demands are incorporated as solutions to stochastic differential equations. For the demand satisfaction, we solve a constrained optimal control problem. Controls in terms of network inputs are then calculated explicitly for different assumptions. Numerical simulations are performed to underline the theoretical results.


翻译:在本文中,我们考虑的是需求不确定的运输网络。网络动态是由线性双曲部分偏差方程式和适当的混合条件提供的,而需求则作为随机差异方程式的解决方案纳入。对于需求满意度,我们解决了有限的最佳控制问题。然后根据不同的假设明确计算网络投入的控制。进行了数字模拟以突出理论结果。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
21+阅读 · 2021年6月26日
【干货书】面向计算科学和工程的Python导论,167页pdf
专知会员服务
41+阅读 · 2021年4月7日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
9+阅读 · 2017年7月28日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年1月23日
Arxiv
30+阅读 · 2021年7月7日
VIP会员
相关资讯
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
9+阅读 · 2017年7月28日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员