Missingness, or the absence of features from an input, is a concept fundamental to many model debugging tools. However, in computer vision, pixels cannot simply be removed from an image. One thus tends to resort to heuristics such as blacking out pixels, which may in turn introduce bias into the debugging process. We study such biases and, in particular, show how transformer-based architectures can enable a more natural implementation of missingness, which side-steps these issues and improves the reliability of model debugging in practice. Our code is available at https://github.com/madrylab/missingness
翻译:缺失或缺少输入的特性是许多模型调试工具的基本概念。 然而,在计算机的视觉中,像素不能简单地从图像中去除。 因此,人们倾向于采用超自然学,例如将像素涂黑,这反过来又可能给调试过程带来偏见。 我们研究这种偏向,特别是显示变压器结构如何能够使失踪得到更自然的落实,而这种结构会绕过这些问题,提高模式调试在实践中的可靠性。 我们的代码可以在https://github.com/madryrab/missingness查阅。