Arnold & Manjunath (2021) claim that the bivariate pseudo-Poisson distribution is well suited to bivariate count data with one equidispersed and one overdispersed marginal, owing to its parsimonious structure and straightforward parameter estimation. In the formulation of Leiter & Hamdan (1973), the conditional mean of $X_2$ was specified as a function of $X_1$; Arnold & Manjunath (2021) subsequently augmented this specification by adding an intercept, yielding a linear conditional rate. A direct implication of this construction is that the bivariate pseudo-Poisson distribution can represent only positive correlation between the two variables. This study generalizes the conditional rate to accommodate negatively correlated datasets by introducing curvature. This augmentation provides the additional benefit of allowing the model to behave approximately linear when appropriate, while adequately handling the boundary case $(x_1,x_2)=(0,0)$. According to the Akaike Information Criterion (AIC), the models proposed in this study outperform Arnold & Manjunath (2021)'s linear models.
翻译:Arnold & Manjunath (2021) 声称,双变量伪泊松分布由于其简约的结构和直接的参数估计方法,非常适合处理一个边缘分布为等离散、另一个为过离散的双变量计数数据。在 Leiter & Hamdan (1973) 的公式中,$X_2$ 的条件均值被指定为 $X_1$ 的函数;Arnold & Manjunath (2021) 随后通过添加截距项扩展了这一设定,从而得到了线性的条件率。这种构建的一个直接推论是,双变量伪泊松分布只能表示两个变量之间的正相关关系。本研究通过引入曲率,将条件率推广以适应负相关的数据集。这一扩展还带来了额外的好处:模型在适当情况下可以近似表现为线性,同时能充分处理边界情况 $(x_1,x_2)=(0,0)$。根据 Akaike 信息准则 (AIC),本研究提出的模型优于 Arnold & Manjunath (2021) 的线性模型。