The core of any flight schedule is the trajectories. In particular, 4D trajectories are the most crucial component for flight attribute prediction. In particular, 4D trajectories are the most crucial component for flight attribute prediction. Each trajectory contains spatial and temporal features that are associated with uncertainties that make the prediction process complex. Today because of the increasing demand for air transportation, it is compulsory for airports and airlines to have an optimized schedule to use all of the airport's infrastructure potential. This is possible using advanced trajectory prediction methods. This paper proposes a novel hybrid deep learning model to extract the spatial and temporal features considering the uncertainty of the prediction model for Hartsfield-Jackson Atlanta International Airport(ATL). Automatic Dependent Surveillance-Broadcast (ADS-B) data are used as input to the models. This research is conducted in three steps: (a) data preprocessing; (b) prediction by a hybrid Convolutional Neural Network and Gated Recurrent Unit (CNN-GRU) along with a 3D-CNN model; (c) The third and last step is the comparison of the model's performance with the proposed model by comparing the experimental results. The deep model uncertainty is considered using the Mont-Carlo dropout (MC-Dropout). Mont-Carlo dropouts are added to the network layers to enhance the model's prediction performance by a robust approach of switching off between different neurons. The results show that the proposed model has low error measurements compared to the other models (i.e., 3D CNN, CNN-GRU). The model with MC-dropout reduces the error further by an average of 21 %.
翻译:任何飞行时间表的核心都是轨迹。 特别是, 4D轨迹是飞行属性预测的最关键组成部分。 特别是, 4D轨迹是飞行属性预测的最关键组成部分。 每个轨迹都含有空间和时间特征, 与不确定性相关, 使预测过程变得复杂。 今天, 由于对空运的需求不断增加, 机场和航空公司必须有一个优化的时间安排, 才能使用机场的所有基础设施潜力。 这有可能使用先进的轨迹预测方法。 本文提出了一个新型的混合深度学习模型, 以提取空间和时间特征, 考虑到哈特斯菲尔德- 杰克逊亚特兰大国际机场(ATL)的预测模型的不确定性。 自动双轨监视- 播送(ADS-B) 数据被用作模型的输入。 这项研究分三个步骤进行:(a) 数据预处理;(b) 由混合革命网络和Gened IMF 模型(CNN- GRU) 以及3- CN 模型的预测。 (c) 第三步和最后一步是将模型的模型比, 将模型的运行结果与其他模型进行比较。 将模型比对Montrod- Reval 21 的结果进行进一步的比较。