The core of any flight schedule is the trajectories. In particular, 4D trajectories are the most crucial component for flight attribute prediction. In particular, 4D trajectories are the most crucial component for flight attribute prediction. Each trajectory contains spatial and temporal features that are associated with uncertainties that make the prediction process complex. Today because of the increasing demand for air transportation, it is compulsory for airports and airlines to have an optimized schedule to use all of the airport's infrastructure potential. This is possible using advanced trajectory prediction methods. This paper proposes a novel hybrid deep learning model to extract the spatial and temporal features considering the uncertainty of the prediction model for Hartsfield-Jackson Atlanta International Airport(ATL). Automatic Dependent Surveillance-Broadcast (ADS-B) data are used as input to the models. This research is conducted in three steps: (a) data preprocessing; (b) prediction by a hybrid Convolutional Neural Network and Gated Recurrent Unit (CNN-GRU) along with a 3D-CNN model; (c) The third and last step is the comparison of the model's performance with the proposed model by comparing the experimental results. The deep model uncertainty is considered using the Mont-Carlo dropout (MC-Dropout). Mont-Carlo dropouts are added to the network layers to enhance the model's prediction performance by a robust approach of switching off between different neurons. The results show that the proposed model has low error measurements compared to the other models (i.e., 3D CNN, CNN-GRU). The model with MC-dropout reduces the error further by an average of 21 %.


翻译:任何飞行时间表的核心都是轨迹。 特别是, 4D轨迹是飞行属性预测的最关键组成部分。 特别是, 4D轨迹是飞行属性预测的最关键组成部分。 每个轨迹都含有空间和时间特征, 与不确定性相关, 使预测过程变得复杂。 今天, 由于对空运的需求不断增加, 机场和航空公司必须有一个优化的时间安排, 才能使用机场的所有基础设施潜力。 这有可能使用先进的轨迹预测方法。 本文提出了一个新型的混合深度学习模型, 以提取空间和时间特征, 考虑到哈特斯菲尔德- 杰克逊亚特兰大国际机场(ATL)的预测模型的不确定性。 自动双轨监视- 播送(ADS-B) 数据被用作模型的输入。 这项研究分三个步骤进行:(a) 数据预处理;(b) 由混合革命网络和Gened IMF 模型(CNN- GRU) 以及3- CN 模型的预测。 (c) 第三步和最后一步是将模型的模型比, 将模型的运行结果与其他模型进行比较。 将模型比对Montrod- Reval 21 的结果进行进一步的比较。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
64+阅读 · 2020年7月16日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
AAAI2020推荐系统论文集锦(附发展趋势分析)
图与推荐
6+阅读 · 2020年1月30日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年12月8日
VIP会员
相关VIP内容
多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
64+阅读 · 2020年7月16日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
相关资讯
AAAI2020推荐系统论文集锦(附发展趋势分析)
图与推荐
6+阅读 · 2020年1月30日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员