We solve the stochastic generalized Nash equilibrium (SGNE) problem in merely monotone games with expected value cost functions. Specifically, we present the first distributed SGNE seeking algorithm for monotone games that requires one proximal computation (e.g., one projection step) and one pseudogradient evaluation per iteration. Our main contribution is to extend the relaxed forward-backward operator splitting by Malitsky (Mathematical Programming, 2019) to the stochastic case and in turn to show almost sure convergence to a SGNE when the expected value of the pseudogradient is approximated by the average over a number of random samples.
翻译:具体地说,我们展示了第一个分布式的SENE单调游戏寻找单调游戏的算法,该算法需要一种准数计算(例如,一个预测步骤)和一次假偏移评估。 我们的主要贡献是将马利茨基(数学编程,2019年)放松的后向操作器分解扩展至随机案件,并反过来显示几乎可以肯定地与SGNE的趋同,因为假正态的预期值大约为若干随机样本的平均值。