The $r$-fold analogues of Whitney trick were `in the air' since 1960s. However, only in this century they were stated, proved and applied to obtain interesting results. Here we prove and apply a version of the $r$-fold Whitney trick when general position $r$-tuple intersections have positive dimension. Theorem. Assume that $D=D_1\sqcup\ldots\sqcup D_r$ is disjoint union of $k$-dimensional disks, $rd\ge (r+1)k+3$, and $f:D\to B^d$ a proper PL (smooth) map such that $f\partial D_1\cap\ldots\cap f\partial D_r=\emptyset$. If the map $$f^r:\partial(D_1\times\ldots\times D_r)\to (B^d)^r-\{(x,x,\ldots,x)\in(B^d)^r\ |\ x\in B^d\}$$ extends to $D_1\times\ldots\times D_r$, then there is a proper PL (smooth) map $\overline f:D\to B^d$ such that $\overline f=f$ on $\partial D$ and $\overline fD_1\cap\ldots\cap \overline fD_r=\emptyset$.
翻译:Whitney trick 的 $$ 折叠类比自 1960 年代以来“ 在空气中 ” 。 然而, 仅在本世纪它们才被声明、 证明和应用, 以获得有趣的结果 。 在这里, 当通用位置 $r$- tuple 交叉点具有正面的维度时, 我们证明并应用了 $- tuple 惠特尼 的 $ 折叠 。 假设 $D = D_ 1\ sqcup\ sqcupt\ sqcup D_r\ tald 磁盘 磁盘、 $k+3 美元( r+1) 和 $: D\ b\ to to a f_ dline$,\\\\\\\\\\\ cap\ a f_ deal_ fr\\\\\\ creax f_ d_ deal_ d_ d_ d_ d_ d_ d_ d_ a f_ d_ d_ d_ d_ d_ d_ d_ d_ fr\ x_ fr\ x_ cal_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ f_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ a_ a a a a a a a a a a a a a a a a a a_ d_ d_ d_ f_ f_ f_ d_ d_ d_ d_ d_ fxxxxxxxxxxxxxxxxxxxxx_ f_ f_ f_ f_ f_ f_ f_ f_ f_ f_ f_ f_ f_