Recent work suggests that convolutional neural networks of different architectures learn to classify images in the same order. To understand this phenomenon, we revisit the over-parametrized deep linear network model. Our asymptotic analysis, assuming that the hidden layers are wide enough, reveals that the convergence rate of this model's parameters is exponentially faster along directions corresponding to the larger principal components of the data, at a rate governed by the singular values. We term this convergence pattern the Principal Components bias (PC-bias). We show how the PC-bias streamlines the order of learning of both linear and non-linear networks, more prominently at earlier stages of learning. We then compare our results to the spectral bias, showing that both biases can be seen independently, and affect the order of learning in different ways. Finally, we discuss how the PC-bias may explain some benefits of early stopping and its connection to PCA, and why deep networks converge more slowly when given random labels.


翻译:最近的工作表明,不同结构的进化神经网络学会以同样的顺序对图像进行分类。为了理解这一现象,我们重新审视了过度平衡的深线网络模型。我们假设隐藏的层足够宽,则假设隐藏的层层足够宽,我们无药可依的分析显示,该模型参数的趋同率在与数据中较大主要组成部分相对应的方向上呈指数加速速度,其速度由单一值决定。我们用这种趋同模式来形容主要组成部分偏向(PC-bias) 。我们展示了PC-bis如何简化线性和非线性网络的学习顺序,在早期学习阶段更为突出。我们然后将我们的结果与光谱偏差进行比较,显示两种偏差都可以独立地看到,并且以不同的方式影响学习的顺序。最后,我们讨论了PC-biraks如何解释早期停止及其与五氯苯连接的一些好处,以及当给定随机标签时,深网络为何会更慢地聚集。

0
下载
关闭预览

相关内容

【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年7月23日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
19+阅读 · 2018年6月27日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员