Spatially varying spectral modulation can be implemented using a liquid crystal spatial light modulator (SLM) since it provides an array of liquid crystal cells, each of which can be purposed to act as a programmable spectral filter array. However, such an optical setup suffers from strong optical aberrations due to the unintended phase modulation, precluding spectral modulation at high spatial resolutions. In this work, we propose a novel computational approach for the practical implementation of phase SLMs for implementing spatially varying spectral filters. We provide a careful and systematic analysis of the aberrations arising out of phase SLMs for the purposes of spatially varying spectral modulation. The analysis naturally leads us to a set of "good patterns" that minimize the optical aberrations. We then train a deep network that overcomes any residual aberrations, thereby achieving ideal spectral modulation at high spatial resolution. We show a number of unique operating points with our prototype including dynamic spectral filtering, material classification, and single- and multi-image hyperspectral imaging.
翻译:使用液晶空间光谱调制器(SLM)可以实施空间差异的光谱调制器(SLM),因为它提供一系列液晶晶电池,每个液晶电池都可以作为可编程的光谱过滤器阵列;然而,这种光学装置由于意外的相位调制而出现强烈的光学偏差,从而排除高空间分辨率的光谱调制。在这项工作中,我们提出了一种新型的计算方法,以实际实施相位流光谱过滤器。我们为空间变化的光谱调制之目的,对SLMS阶段产生的偏差进行了仔细和系统的分析。分析自然使我们找到一套“良好模式”,最大限度地减少光学偏差。然后我们培训一个深度网络,克服任何残余的偏差,从而在高空间分辨率下实现理想的光谱调制。我们展示了一些独特的操作点,其原型包括动态光谱过滤器、材料分类以及单倍和多振动超光谱成像成像。