Behavioral scoring of research data is crucial for extracting domain-specific metrics but is bottlenecked on the ability to analyze enormous volumes of information using human labor. Deep learning is widely viewed as a key advancement to relieve this bottleneck. We identify one such domain, where deep learning can be leveraged to alleviate the process of manual scoring. Novelty preference paradigms have been widely used to study recognition memory in pigs, but analysis of these videos requires human intervention. We introduce a subset of such videos in the form of the 'Pig Novelty Preference Behavior' (PNPB) dataset that is fully annotated with pig actions and keypoints. In order to demonstrate the application of state-of-the-art action recognition models on this dataset, we compare LRCN, C3D, and TSM on the basis of various analytical metrics and discuss common pitfalls of the models. Our methods achieve an accuracy of 93% and a mean Average Precision of 96% in estimating piglet behavior. We open-source our code and annotated dataset at https://github.com/AIFARMS/NOR-behavior-recognition
翻译:对研究数据进行行为评分对于利用人类劳动分析大量信息的能力至关重要,但对利用人类劳动分析大量信息的能力却有瓶颈。深层次学习被广泛视为缓解这一瓶颈的关键进步。我们确定了其中的一个领域,可以借此利用深层次学习来缓解人工评分过程。新颖偏好模式已被广泛用于研究猪的识别记忆,但对这些视频的分析需要人手干预。我们引入了以“小小鼻涕”(PPNPPB)为形式的一组此类视频数据集,该数据集配有猪的动作和关键点。为了展示在这一数据集中应用最新行动识别模型,我们根据各种分析指标对LRCN、C3D和TSM进行对比,并讨论这些模型的常见陷阱。我们的方法在估计猪肉行为方面实现了93%的准确度和平均96%的准确度。我们公开来源了我们的代码和在 https://github.com/AIFARMS/NORAREAVAREHORAVOR数据集。