High-performance autonomy often must operate at the boundaries of safety. When external agents are present in a system, the process of ensuring safety without sacrificing performance becomes extremely difficult. In this paper, we present an approach to stress test such systems based on the rapidly exploring random tree (RRT) algorithm. We propose to find faults in such systems through adversarial agent perturbations, where the behaviors of other agents in an otherwise fixed scenario are modified. This creates a large search space of possibilities, which we explore both randomly and with a focused strategy that runs RRT in a bounded projection of the observable states that we call the objective space. The approach is applied to generate tests for evaluating overtaking logic and path planning algorithms in autonomous racing, where the vehicles are driving at high speed in an adversarial environment. We evaluate several autonomous racing path planners, finding numerous collisions during overtake maneuvers in all planners. The focused RRT search finds several times more crashes than the random strategy, and, for certain planners, tens to hundreds of times more crashes in the second half of the track.
翻译:高性能自主性通常必须在安全界限内运作。 当外部代理人存在于一个系统中时, 在不牺牲性能的情况下确保安全的过程就变得极其困难。 在本文中, 我们提出一种基于快速探索随机树算法来测试这种系统的压力测试方法。 我们提议通过对抗性代理人的干扰来发现这种系统中的错误, 从而改变其他代理人在另一种固定情况下的行为。 这就创造了一个巨大的可能性搜索空间, 我们随机地探索和集中的战略, 以一个我们称之为客观空间的可观测状态的封闭性投影来运行RRT。 这种方法用来在自动赛中进行超速逻辑和路径规划算法的测试, 而在对抗性环境下, 车辆高速驾驶。 我们评估数个自主赛道规划者, 在所有规划者中发现在超载动作中多次碰撞。 集中的 RRT 搜索发现撞击次数比随机策略多几倍, 而对于某些规划者来说, 在赛道的后半场中, 有数十至数百倍的碰撞次数。